Nanoparticle-based membrane assembly and silicification in coacervate microdroplets as a route to complex colloidosomes.

نویسندگان

  • James Fothergill
  • Mei Li
  • Sean A Davis
  • John A Cunningham
  • Stephen Mann
چکیده

The chemical construction of complex colloidosomes consisting of a molecularly crowded polyelectrolyte-enriched interior surrounded by a continuous shell of closely packed silica nanoparticles is studied using optical and fluorescence microscopy, high-resolution X-ray microcomputed tomography, and synchrotron radiation X-ray tomographic microscopy. The colloidosomes are prepared by addition of partially hydrophobic silica nanoparticles to dodecane dispersions of positively or negatively charged coacervate microdroplets consisting of aqueous mixtures of poly(diallyldimethylammonium chloride) (PDDA) and adenosine 5'-triphosphate (ATP) or PDDA and poly(acrylic acid) (PAA), respectively. Interfacial assembly of the nanoparticles produces a polydisperse population of well-defined PDDA/PAA droplets with diameters ranging from 50 to 950 μm. In contrast, reconstruction of the PDDA/ATP coacervate interior occurs on addition of the silica nanoparticles to produce a nanoparticle-stabilized oil-in-coacervate-in-oil multiphase emulsion. Transfer of the coacervate-containing colloidosomes into water and replication of their internal structure are achieved by addition of tetramethoxysilane, which serves as both a cross-linking and silicification agent to produce mineralized PDDA/PAA or PDDA/ATP microstructures with a uniform solidified texture or multichambered interior, respectively. The integration of colloidosome and coacervate technologies offers a route to a new type of multifunctional microcompartmentalized system based on the membrane-mediated incarceration of molecularly crowded chemical environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Self-Assembly of a Copolymer-Stabilized Coacervate Protocell

Complex coacervate microdroplets are finding increased utility in synthetic cell applications due to their cytomimetic properties. However, their intrinsic membrane-free nature results in instability that limits their application in protocell research. Herein, we present the development of a new protocell model through the spontaneous interfacial self-assembly of copolymer molecules on biopolym...

متن کامل

Monitoring Early-Stage Nanoparticle Assembly in Microdroplets by Optical Spectroscopy and SERS.

Microfluidic microdroplets have increasingly found application in biomolecular sensing as well as nanomaterials growth. More recently the synthesis of plasmonic nanostructures in microdroplets has led to surface-enhanced Raman spectroscopy (SERS)-based sensing applications. However, the study of nanoassembly in microdroplets has previously been hindered by the lack of on-chip characterization t...

متن کامل

Chemical Signaling and Functional Activation in Colloidosome-Based Protocells.

An aqueous-based microcompartmentalized model involving the integration of partially hydrophobic Fe(III)-rich montmorillonite (FeM) clay particles as structural and catalytic building blocks for colloidosome membrane assembly, self-directed membrane remodeling, and signal-induced protocell communication is described. The clay colloidosomes exhibit size- and charge-selective permeability, and sh...

متن کامل

Double Emulsion-Templated Nanoparticle Colloidosomes with Selective Permeability

Colloidosomes are microcapsules whose shell consists of densely packed colloidal particles. Their physical properties such as permeability, mechanical strength, and biocompatibility can be precisely controlled through the proper choice of colloids and preparation conditions for their assembly. The high degree of control over their physical properties makes colloidosomes attractive structures fo...

متن کامل

Non-LBL Assembly and Encapsulation Uses of Nanoparticle-Shelled Hollow Spheres

Nanoparticles (NPs, diameter range of 1–100 nm) can have sizedependent physical and electronic properties that are useful in a variety of applications. Arranging them into hollow shells introduces the additional functionalities of encapsulation, storage, and controlled release that the constituent NPs do not have.This chapter examines recent developments in the synthesis routes and properties o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 30 48  شماره 

صفحات  -

تاریخ انتشار 2014